科研进展
偶极激子因其电子和空穴分离的特性是凝聚态物理领域的重要研究对象,但一直存在难以被观测的问题。最新的《科学》期刊(Science)中,复旦大学物理学系晏湖根、光电研究院黄申洋团队与合作者发表成果发现全新偶极激子显著红外光吸收使其能被光谱轻松检测为多体物理等领域拓展探索空间。传统偶极激子与光相互作用能力弱,观测条件极端苛刻激子是一种由电子和空穴构成的准粒子,空穴带有正电荷,而电子则带有负电荷。“激子类似于氢原子,但与氢原子相比有更多的调控自由度。”复旦大学物理学系教授晏湖根介绍,氢原子的正电荷和负电荷在空间上紧密“吸引”在一起,但偶极激子的正电荷和负电荷波函数中心在空间上是分离的,这使得激子与激子之间的相互作用效果较强,便于观测到一些有趣的物理现象。激子能够对二维半导体材料的物理性质产生显著影响,一直是二维材料领域中最活跃的研究前沿之一。但常规激子由于缺乏固定的电偶极矩,在栅压调控方面存在一定局限性,即斯塔克效应弱。此外,常规激子的寿命较短、激子间的相互作用较弱,使其在强关联物理和多体物理等凝聚态物理的重要研究领域中难以发挥更大作用。偶极激子则是一种即使无外加电场诱导也具有电偶极矩的激子。
2024-11-01 14:19512
分享到